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Abstract —Solutions for the problems of bending and torsion of cantilever beams with solid circular
sector sections are obtained in closed form. 1t is assumed that the circular sectors are confined in
angles . 772V in which ¥ is an integer. It is also assumed that all conditions needed for the St.
Venant's solution of fiexure of a cantilever beam are met. The method of solution is as follows.
First, the solution for flexure of a semicircular cross-section beam, with the load in its plane of
symmetry. is obtained in closed form. Next. consideting one-half of this semicircular section, a
twisting moment is superposed in order to eliminate the rotation created by the flexure. Thus. the
closed torm solution for the bending of a quarter of a circle cross-section beam is obtained. This
procedure is continued in order to obtain solutions for bending of beams having circular sector
cross-scctions of angles 7/4, n/8, . . In these steps, closed form solutions for torsion of these sector
seetions are utilized. Numerical results for the cases of sectors with angles =, 1/2 and #/4 are presented.

INTRODUCTION

Analytical solutions for flexure and torsion of bars according to St. Venant's theory have
been obtained tn a few investigations. Scegar and Pearson (1920) derived solutions for the
problem of bending of beams with circular sector cross-sections. Later Timoshenko and
Goaodier (1951) gave the sotution for the torsion of circular sector cross-section bars,
However, these authors obtained their solutions in the form of infinite series. Greenhill
{1878) also gave a solution for the torsion of a sector of a circle in closed form involving
two integrals. As cited by Love (1944), these integrals can be evaluated for certain values
of the angle of the sector. Recently, Naghdi (1985) obtained a closed form solution for the
torsion of a bar with scmicircular cross-section. Using polar coordinates, he first derived
the results in the form of infinite series. Then, reducing these series to certain forms and
cmploying some known formulas (Gradshteyn and Ryzhik, 1965 ; Kantorovich and Krylov,
1964), he obtained the closed torm solution. A technique similar to that of Naghdi (1985)
will be employed here in order to obtain the closed form solution for the flexure of a
semicircular cross-section cantilever with the load in its plane of symmetry. The readers are
reminded here that the solution for flexure of a semicircular section beam subject to a load
perpendicular to its plane of symmetry was given in Timoshenko and Goodier (1951) and
Sokolnikofl (1956). This solution, along with the results obtained in this investigation and
those of the work of Naghdi (1985). complete the solution for unsymmetrical bending,
combined with torsion, of a semicircular scction beam.

Closed torm solutions for the torsion of bars with circular sector sections of angles
n/2, /4, ete. are derived here. These solutions are needed, as explained in the following. If
we consider the displacement field in one-half of the section in the flexure of a semicircular
section beam loaded in the plane of symmetry, we see that there exists a rotation due to
flexure. In order to climinate this rotation, we can superpose the solution for torsion of the
quarter of a circle section bar. The procedure can be continued in order to obtain the
solutions for unsymmetrical flexure, combined with torsion, of cantilevers with circular
scctor sections of angles njd, /8, etc.

Various numerical results for these beams with sector of angles n, 7/2 and n/4 are
presented.
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Fig. 1. Semicircular cross-section beam subject to a load in its plune of symmetry.

METHOD OF SOLUTION

(a) Solution for the flexure of a semicircular cross-section cantilever

Consider a prismatic cantilever beam whose cross-section is a solid semicircle, as shown
in Fig. 1. The nondimensional rectangular coordinates & = X/R, 1= Y/R, as well as the
dimensionless polar coordinates p = r/R. and 6 centered at 0. are chosen for the analysis.
In addition. the centroidal axes &, and 57, arc also utilized. According to St. Venant's theory
of bending of beams (Sokolnikoff, 1956), the equation

o

V‘([)z = 0, V‘ = (}E} + ‘;}"t‘f’ (l)

in which ¢ is the nondimensional stress function, must be satisfied. and the condition

‘ff{ = [(1 +v)ni—vEi] cos (. n) (2)

has to be fulfilled on the boundary of the semicircular region, In (2), n is the outward
normal direction to the boundary, and v is Poisson’s ratio. At the semicircular and diametral
bounduries p = 1, and 7 =0, the boundary condition (2) can be written in terms of ()
and :

a¢’ 3 8 . I6 - .

— = in® §— — gin 4 — L=y 2 0is g’

an o [(l +v)(sm ) 3 sin 0+ 97:‘) v €O :}un 3
Op 4 16
%: [(l+v) 2y } )
on quﬂ

Let us now introduce another harmonic function ® such that:

16(1 +v)

© = = L' =InE)+ 5 (140 =€) = gt ®)

The differential eqn (1) and the boundary conditions (3) and (4) then become:
Vi =0, (6)

o

4
R = (lv=1) sin 30+ (iv+ D sin - (l+v)(4) (1+v)( )cos-& N
gt
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oo co

a—" yms =E =0. (8)

n=0

The solution for the harmonic function @ is written in polar coordinates in the form

® = C,p? cos 20+ Y. A,.p™ cos 2mb. 9

me |

[t is seen that with this choice of ®, the boundary condition (8) is automatically satisfied.
In order to satisfy condition (7), we expand sin 8 and sin 38 in that relation in terms
of Fourier series in cos 2mf. Thus, condition (7) becomes

o
ép

4 2 X l
= —|— - 2
. (3n>(‘+v) cos 20+ n(_v h g (3+2m 3_.2'") cos 2md

2 x l 1
Zrl 3
+ 7r(zv+¢)"§l (-————I 5t Tom __2m> cos 2m0. (10)

Substituting expression (9) into (10) and setting the cocflicients of cos 2m0 equal on both
sides, we find the unknown constants C; and A4,,:

C, = —(%E)(l +), (1

ro—

N | | oan[ o
An = n (v—2) [21n(3 +2m) 2m(3 - Zm)] L) I:"m( I +2m) + 2m(1 — .?.m)]'
(12)

Substituting (11) and (12) into (9), we obtain the solution in the form of an infinite series.
We now employ partial fraction techniques in order to write the terms in expression for 4,
in simpler forms, and use the known identities (Naghdi, 1985 Gradshteyn and Ryzhik,
1965 ; Kantorovich and Krylov, 1964) :

& 1 cosh A+cos 0)

Fi(p.0) :-,,,_z;_‘,., m moi4 ! (cosh A—cos 0)’

Fip.0) = Y £ sin mf = - {-— z +arctan [G(4, 0)]+arctan [G(l,n—O)]}.
TTmatys M —2 2

- 1 (cosh A—1)? "
Fy(p.0) :M.XI;M - cos moi4 In I:coshz oo O —In (1—e"%),

(1 +cosh 1) tan (8/2)
sinh 4

A= —Inp, G(4,0) =

.

1>p>0, 0+#0,n, (13)

and similar formulas in order to write ® and its derivatives in closed form. For example,
we have:
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s 1 2 | cos 36
‘D=C:p' cos 20+ E(V—'§) {§F3(P.9)-3 p]

[—p cos 0—1p® cos 30+ F (p.0)]

I sin 38

3 P

[—p sin 8—1p? sin 30+ Fy(p. 9)]—%;)3[-— % cos 28+ (cos 30)F,(p.0)
—(sin 39)F2(p,9)]}+ ;lz-(v-f—%) {ZF;.(p. g — % cos [ —p cos 8+ F,(p, 0)]

l
— ; sin O] — p sin 0+ F1(p, )] — pl(cos O)F,(p. 8) —(sin D) F1(p, 0)]}. (14)

Denoting by (r.,)s1. (.s)s: the shear stresses due to bending in the semicircular cross-
section beam, and employing the relations given in Sokolnikoff (1956). we obtain:

- (r:-)hl (1([) v . 5 . - 8

. = LA = — - 3 - 3 — < S*- J— ¢ S 2
. )m WK R [(’p +3( p*sin® 8—9p° sin O cos® )+ In (1+v)p cos 20

2 . } 3 - 8 - hi
—p*sint 04 vp* cos 20 sin G+ I (I+vpsint 0. (15)

- (Todi I o v 0.2 ind N 8 .

g - = o - 2 08 } — 2 ‘..‘ - $ 2
{(T.o)m ik, R [I' a0 + 3();: sin® @ cos 00 -3p° cos’ ) I {1 +v)p sin 20

16 2, . .
+ (qn’l)“ +v) cos O —p*(}sin 20 sin 0—v cos 20 cos 0)
| 16 8 4 O)cos K P
—{l+v) Ry 3np sin cos U, 7 = El:;' (16}

E = Modulus of clasticity,
1 = Modulus of shear,

I., = Moment of inertia of the section.

(b) Solution for torsion of circular sector cross-section bars

In the following, we shall derive only the solution for torsion of a quarter of a circle
cross-section bar, The solution for sectors of angles n/4, n/8, etc., can be obtained similarly.
According to St. Venunt's theory for torsion of prismatic bars (Sokolnikoff, 1956), the
equation

VY, = -2, a7
must be satisfied, and the condition
¥, =0 on the boundary (18)
has to be met.

As in Naghdi (1985), we expand the right-hand side of (17) into a Fouricr sine series
suitable for a quarter of a circle region:
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W, 10Y, 1 &Y, 16 2 sinmb

ENTLRAE Y -
cp- p EP pt é6° T maToto M

(19)

The solution for (19) satisfying the condition (18) can be found in the usual way. Thus, we
have

x 2
W.= Y A%p™sin m()—(i)p:(ln p—1) sin 260
2.6.10

m=

kS l6 2 1 ] .
+m-6.ZIO.I4(— -R_)p m sin m, (20)

in which

A= —

) 2t

* _ - ) 2
Az ( )m(.,_m)(.,+") m = 6,10, 14,.. (20

Employing a technique similar to the one for the summing of the series solution for
b, we can casily write the solution ', in closed form. For the sake of brevity, however, we
shall not give the results here,

The Prandt] function W, for the sector section of angle n/4 is obtained in the same
manner

w - d 3-p sin m(
¥, = A p™ sin mt + 22)
! m=§2.2() / m-J.ZIZ.’O n’"(m 2)(”1""‘7)
in which
- -32
= . (23)
nm(m—2)(m+2)
The nondimensional torsional rigidities D, for the sector sections are defined as
- rii C1 7\};
b, = J‘ J pt S dp do,
0 a
i=248,.... 29

Here, in (24), the index i refers to the sector cross-section of angle n/i.

(c) Solution for the flexure of a quarter of a circle cross-section cantilever

First, let us consider the solution for the beam which is subject to a load in its plane
of symmetry. This solution and the related shear stresses can be easily obtained from ®,
(t.,)s1 and (1.9)s, given previously for the semicircular beam. For example:
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"

Fig. 2. Quarter of a circle cross-section beam subject to a load in its plane of symmetry.

(Tpdn2 = (ol y H (T nil g e

(tidez = (odndl g + (Tl o 25)

The solution obtained in this fashion is, of course, for a load P(ﬁ/l) (see Fig. 2).

Next, consider the general case of the quarter of a circle section beam subject to load
P/2 (see Fig. 3). In order to obtain the solution, we follow the technique pursued by
Timoshenko and Goodier (1951), and Sokolnikofl (1956) in linding the solution for the
semicircular case with load perpendicular to the plane of symmetry. Looking at the first
guadrant in the semicircular cross-section of the beam studied in section (a), we note that
there is no shear stress in the 47 plane. We also observe that in order to eliminate the
rotation at the clement located at center 0, we must apply the load P/2 at a distance ¢, from
the origin such that

M (26)
@y = ne i 26
TP
in which
e ) PR -
A’I: = j\ f (t_,u)]”r- df d() = 3 1‘/!1. (27)
0 0 n
2 PR
2(t+v) (8 9n)
- 2
1“{3 = J f (f:{))blpz dﬂ do. (28)
i 0

At the same time, we must apply a twisting moment T, in the opposite direction of
M, to the quarter of circle cross-section so that the rotation at the centroid shall be
climinated. The magnitude of this torque is

Fig. 3. Quarter of a circle cross-section beam subject to a load and a twisting moment.
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Fig. 4. Quarter of a circle cross-section beam subject to a load at its center of flexure.

T = RPD,v(4/3m) ‘ (29)

- n 8
2(l+»)(§ - 67;)

In this fashion. the total shear stress (z.4),. for the flexure of the quarter of a circle section
beam is obtained

(t:”)b: = (r:h\)l-l —(r:ﬂ}f:

P

- : T 30
- T oTmTT e 8) (t:ﬁ)hl‘" 3#(‘:10)]"_‘ - (' )

2R2(l+l’)(: — 97*!

Here, in (30), (T.)r, represents the nondimensional shear stress produced by the twisting
moment. [t is given by :

(7‘?3

o &ID)

(f:ﬁ) ="

The load at the distance ¢, from the center and the twisting moment can be combined to
reduce to u single load. The distance of the line of action of this single force from the origin
is found to be (sec Fig. 4)

- A4 4 Ds
Sy= - ( ) D = 0.07346,
i +v In (n g8 )
8 9n
v=103 (32

(d) Solution for the flexure of circular sector section beams with angles /4, n/8 etc.

The solution for the bending of cantilevers having a circular sector cross-section with
an angle of n/4 can be obtained from the solution for the symmetrical loading of a quarter-
of-a-circle section beam. The procedure is exactly the same as that in the previous case.
Thus, for the symmetrical loading of a beam with a n/4 angle sector (see Fig. 5). we have:
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Fig. 5. One eighth of a circle cross-section beam subject to a load in its plane of symmetry.

(T )ha = (Tl , + (T2l L, o

(Ta)ns = (Tadsol , +(Todnal,, . o (33

These shear stresses are due to the load (2)(P/2) sin (r/8) in the plane of symmetry of the
cross-section.

For the general case of a beam with n/4 angle sector section we start from the
symmetrical bending of a quarter-of-circle cross-section cantilever (see Fig. 2) and pursuc
the previous procedure. The quarter-of-a-circle scction beam is subject to it load of P( \,/:2.f4)
in each halt as shown in Fig. 6. In order to eliminate the rotation at O the force P(\/2/4)
must act at a distance ¢ from the origin. Also a twisting moment 7' has to be applied in
order that the rotation at the centroid be eliminated (see Fig. 7). Similar to the case of a
quarter-of-a-circle cross-section beam the force and the twisting moment can be combined
to a single foree I’(\/'.’/4) at a distance oy = ¢y — 0, from the vrigin, The expressions for
torque 7'y, the nondimensional distances é, = ¢4/R, &, = 8,/R, and the shear stress (.,),

I RV’)' tan
.;n \‘

Ty= (34)

5 n | 8\
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Fig. 6. One cighth of a circle cross-section beam subject to a load at its center of lexure,

0
— g, te—

Fig. 7. Onc eighth of a circle cross-section beam subject to a load and a twisting moment.
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4M, 2M,

DR NER 4wk 8)

v}l = —_

8 9z

1

= J' I (fo)s2p” dp d8 = 0.1149,
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NUMERICAL RESUILTS
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(35)

(36)

37

(38)

Numerical results for the dimensionless shear stresses ., and £, are given for beams
with circular sector cross-sections ol angles 7, =/2 and =/4. In Table 1, the nondimensional

Table 1. The values of nondimensional shear stress (2.,),, vs p along 0 = /2 for the
bending of the semicirculir section beam

» 0.l 0.2 0.3 0.4 0.5
(£,0m 0.09099 0.16185 0.21248 0.24282 0.25283
o 0.6 0.7 0.8 0.9 !

(E.)n 0.24254 0.21201 0.16133 0.09062 0

Table 2. The values of nondimensional shear stress (§2,)s, vs p along € = /4 for the
symmetrical bending of a quarter-of- .n-un,lc section cantilever

P 0.1 0.2 03 04 0.5
(£, )n: 0.09908 0.17579 0.23039 0.26313 0.27418
p 0.6 0.7 08 09 1

()0 0.26363 0.23136 0.17706 0.10018 0

Table 3. The valucs of nondimensional shear stress (£7,),, vs p along 0 = /8 for the
symmetrical bending of the cantilever with circular sector section of angle /4

p 0.1 0.2 0.3 0.4 0.5
(£ )oa 0.19826 0.35165 0.46017 0.52388 0.54293

P 0.6 0.7 0.8 0.9 1
(s 0.51773 0.44916 0.33872 0.18842 0

SAS 25:11-6
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Table 4. The values of nondimensional shear

stresses (_,),: and {{.,),; vs p along ¢ = 2.4 for

the general case of bending of a quarter-of-a-circle
cross-section beam (see Fig. 3)

4 ()2 (Fa s
0.1 0.04954 0.07307
0.2 0.08789 0.12084
0.3 0.11520 0.15730
0.4 0.13156 018544
0.5 0.13709 0.20667
0.6 0.13181 0.22185
0.7 0.11568 0.23158
0.8 0.08853 0.23630
0.9 0.05009 0.23638

Table 5. The values of nondimensional shear
stresses {7.,)p, and (£.0)pa vs p along 0 = n:8 for
the general case of bending of a cantilever with
circular sector section of angle = #/4 (see Fig. 7)

” (T.0)na (T)na
0.1 0.09913 0.00692
3.2 0. 17582 0.01487
0.3 0.23009 0.02334
0.4 £.26194 0.03182
0.5 0.27147 0,03981
0.6 .25887 003681
0.7 (122458 .0S5231
0.8 3.16936 005583
0.9 0.09421 0.05692

values of the shear stress (7,5, vs p are presented along the line OA (see Fig. 1), In Tables
2and 3, the dimensionless shear stresses (27, and (5,54 vs g are given for the symmetrical
loading of beams with sector sections of angles /2 and /4 (see Figs 2 and 5). In Tables 4
and 3, dimensionless shear stresses (7., )0, (Ta)s 2, (£, )00 40d (T0)54 vs poare presented along
the lines OA and OB (sce Figs 3 and 7) for the general cases of bending of beams with the
sector sections of 7/2 and /4 angles.

CONCLUSION

The solutions presented in this article are quite general, and can be used for beams
with a semicircular scction or a circular sector section of uny angle. In particular, when the
angles are mr, #/2N in which N is an integer, the solutions can be presented in closed forms,
Since the solutions for the torsion of various scctor sections ire also obtained, the problems
tfor the general cases of unsymmetrical bending, combined with torsion of cantilevers with
the mentioned cross-sections are solved.
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